
1 Preliminaries

1.1 Bit arithmetic and swapping
We’re going to be doing some bit arithmetic in this lab, so it’s good to get a
small refresher on doing some bit arithmetic. In base 2 a number y = 101102 is
y1 · 24 + y2 · 23 + y3 · 22 + y4 · 21 + y5 · 20 where yn represents the nth bit of y from
the left. Note that in general for an n bit string, the largest exponent will be 2n−1

and the smallest will be 20.
We can split the bitstrings apart the same way we do with numbers. For

instance I can say 1234 = 12 · 100 + 34, and similarly I can do with bits. y =
y1y2y3y4y5 = y1y2 · 24 + y3y4y5.

We can shift a bitstring to the left by multiplying it with 2, the same way
that multiplying a number by 10 shifts all digits to the left and appends a 0.
1234 · 10 = 12340, 101102 · 2 = 1011002. We’ll also need a swapping operation
y = 01101 which just reverses the order of all the bits.

In our proof we’ll need to express the following product. You can refer back to
this section later to understand why we’re doing this, but currently we want to
show that we can express a product as a certain sum. Namely we’re interested in
expressing the value

bx · cy

Where b and c are 1 bit length, and x, y are n− 1 bit length. Note that cy does
not in this case denote multiplication, but the concatenation of a bitstring. In this
case c is the first bit of the bitstring cy. All multiplications involving a bitstring
are denoted with a · operator. If you see two bitstrings next to each other then
this is a concatenation.

In bx the b goes to the end because of the swap, and so we have

bx · cy = xb · cy

Now we can split the bitstring as we did above, and then use distributivity. This is
no different than expressing 12 ·34 = (10+2) · (30+4) = 10 ·30+10 ·4+2 ·30+2 ·4.
It is just unusual to have to multiply like this.

bx · cy = xb · cy = (x · 2 + b) · (c · 2n−1 + y) = 2n · x · c + 2 · x · y + 2n−1 · b · c + b · y

In our proof we will be interested in reaching the product on the left, and we
will do so by obtaining the sum on the right.

1

1.2 Roots of unity
The roots of unity that we’re dealing with are going to be the N = 2n roots of
unity, which gives us some nice properties. Remember that the nth root of unity
was a complex number z such that zn = 1. A n-th primitive root of unity is one
that is not a k-th root of unity, for any positive k < n. So we can’t say that our
28th primitive root of unity is 1, for instance, as it is also the 4th root of unity for
example.

We find the primitive roots of unity by dividing the unit circle up into n sections,
as multiplying elements on the unit circle only adds the angle between them. So if
we have z that is 1

n
of a full turn of the unit section, then zn does the full turn and

brings us back to 1. The general formula for expressing this is e
2πi
n . Since we’re

only dealing with powers of 2, we define a shorthand ωn = e
2πi
2n .

1
−1

ω2 = i

−i

1
−1

i

−i

ω3

Figure 1: Roots of unity for N = 22 giving ω2 and N = 23 giving ω3.

Note that when dealing with ωn’s, we have a nice new property emerging.
Namely that ω2

n+1 = ωn. This is quite intuitive if you think about dividing up the
unit circle - in ωn+1 we’re halving each sector, so we need to take two steps of ωn+1
to do one step of ωn. This holds in the general case too.

ωn = e
2πi
2n = e

2πi·2k
2n·2k = (e

2πi
2n+k)2k = ω2k

n+k

This is something that we will need in the later proof, as we’ll express things such
as ω2 = ω2n−2

n . It follows from above (take k = n− 2).

2

2 Implementing QFT

2.1 Our target
On a N = 2n system we want to implement QFT which is defined as

QFT |x〉 → 1√
N

N−1∑
y=0

ωx·y
n |y〉

where the xk stands for integer multiplication of the numbers represented by
bitstrings x and k. First let’s look at a special case of a 1-qubit system. What we
would want then is

QFT |x〉 → 1√
2

(ωx·0
1 |0〉+ ωx·1

1 |1〉)

And since we only have two basis states we can even explicitly compute what each
basis state is mapped to. Notice that ω1 = −1

QFT |0〉 → 1√
2

(ω0·0
1 |0〉+ ω0·1

1 |1〉) = 1√
2

((−1)0|0〉+ (−1)0|1〉) = |+〉

QFT |1〉 → 1√
2

(ω1·0
1 |0〉+ ω1·1

1 |1〉) = 1√
2

((−1)0|0〉+ (−1)1|1〉) = |−〉

Conveniently, it turns out that we can implement QFT on a 1-qubit system
using just a Hadamard gate. To extend to larger systems, we’ll use a recursive
approach, where we assume the existence of a n− 1 qubit QFT gate and use that
to implement an n qubit one.

2.2 Swapping
To make our life a little easier, we’ll have the QFTn gate be slightly different, where
the input first goes through bit flipping.

QFT n|x〉 = 1√
2n

2n∑
y=0

ωx·y
n |y〉

Notice that QFT 1 = QFT1 since swapping a bitstring of length 1 does nothing.
Another thing to notice is that if we achieve implementing QFT n then we can
make a QFTn by first flipping the input with a unitary that swaps qubits around

3

. . .

.
QFT n−1

R2 R3 Rn H

QFT n

Figure 2: The construction of QFT n

U |x〉 → |x〉 and then applying QFT n.

|x〉 ⇒ U |x〉 = |x〉 ⇒ QFT n|x〉 = 1√
2n

2n∑
y=0

ωx·y
n |y〉 = 1√

2n

2n∑
y=0

ωx·y
n |y〉

|x〉 → 1√
2n

2n∑
y=0

ωx·y
n |y〉

The above maps |x〉 to exactly what is needed in QFTn. All that is really
happening here is that flipping the input twice (once in U, once in the equation of
QFT) gets us back to normal.

2.3 Induction
So now that we’ve seen how it’s enough for us to construct QFT n and we know
that a Hadamard gate is QFT 1, if we can show how to create a QFT n using only
a QFT n−1 then we have successfully implemented QFT!

We will split out input into two parts, so we’re dealing with |bx〉 = |b〉 ⊗ |x〉
where b is just a bit and x is a n− 1 length bitstring.

As we’ve now split the input, it is helpful to redefine our target (QFT n) in a
way where the input is also split.

QFT n|bx〉 = 1√
2n

∑
c∈{0,1},y∈{0,1}n−1

ωbx·cy
n |cy〉 = 1√

2n
ωb·c·2n−1+2·x·y+b·y+x·c·2n

n |cy〉

In the above equation, we’re using the identity that we defined in subsection 1.1
where we talked about integer multiplication of bx · cy.

4

We first run the smaller QFT n−1 on the x part and just apply the definition.

(I ⊗QFT n−1)|bx〉 →
1√
2n−1

2n−1∑
y=0

ωx·y
n−1|by〉

Now we will do the controlled rotations, where we rotate our first bit by Rn is
the nth bit is 1. The rotation Rn itself is defined as

Rn =
(

1 0
0 ωn

)
Rn|0〉 = |0〉
Rn|1〉 = ωn|1〉

Notice that since 1 = ω0
n, we can also write Rn|b〉 = ωb

n|b〉. And because the yn

bit controls whether we even do the rotation, we do a logical conjunction between
b and yn−1 (both have to be 1 for the gate to do something), which for bits is a
multiplication! So when expressing the controlled gate Cn where the second bit is
the control bit, the mapping looks like

Cn|00〉 → |00〉 Control bit is 0, no rotation
Cn|10〉 → |10〉 Control bit is 0, no rotation
Cn|01〉 → |01〉 No rotation as Rn|0〉 = |0〉
Cn|11〉 → ωn|11〉
Cn|ab〉 → ωa·b

n |ab〉

After so after we apply the first rotation gate R2, our state will be

1√
2n−1

2n−1∑
y=0

ωb·y1
2 · ωx·y

n−1|by〉

Now we can express ω2 as ωn to the power of something like in subsection 1.2.

ω2 = e
2πi
22 = e

2πi·2n−2
2n = (e 2πi

2n)2n−2 = (ωn)2n−2

And because we have ωb·y1
2 = ωb·y1·2n−2

2 you can think of the multiplication of 2n−2

as effectively shifting one of those bits (let’s say y1) n− 2 steps to the left. So b
is multiplied with a number where its bit representation is n− 1 bits long and it
starts with y1.

5

Doing this with R3 with the second bit y2 gives us the coefficient ωb·y2·2n−3
n ,

which is the y2 bit shifted n− 3 positions to the left. And in our state

1√
2n−1

2n−1∑
y=0

ωb·y1·2n−2

n · ωb·y2·2n−3

n · ωx·y
n−1|by〉

notice that we can unite the two new terms as they have the same base for the
exponentiation.

ωb·y1·2n−2

n · ωb·y2·2n−3

n = ωb·y1·2n−2+b·y2·2n−3

n = ωb·(y1·2n−2+y2·2n−3)
n

In the above equation, the sum (y1 · 2n−2 + y2 · 2n−3) is what you would get if you
turned the last n− 2 bits of y to 0. But if we keep doing this process, we eventually
recover the entire y this way.

1√
2n−1

2n−1∑
y=0

ωb·y1·2n−2

n · ωb·y2·2n−3

n · . . . · ωb·yn−1
n · ωx·y

n−1|by〉 =

1√
2n−1

2n−1∑
y=0

ωb·y1·2n−2+b·y2·2n−3+...+b·yn−1
n · ωx·y

n−1|by〉 =

1√
2n−1

2n−1∑
y=0

ωb·y
n · ω

x·y
n−1|by〉

We’ll also move ωb·y
n · ω

x·y
n−1 to a ωn base. Remember that ωn−1 = ω2

n and thus our
state is

1√
2n−1

2n−1∑
y=0

ωb·y
n · ω2·x·y

n |by〉 =

1√
2n−1

2n−1∑
y=0

ωb·y+2·x·y
n |by〉

Notice that we have all the terms of our target now that don’t involve c. To
introduce c we’ll run the bit b through a Hadamard gate. Remember that from the
1-qubit case we know that

H|x〉 = 1√
2

∑
c∈{0,1}

ωb·c
1 |c〉

(H ⊗ I) 1√
2n−1

2n−1∑
y=0

ωb·y+2·x·y
n |by〉 = 1√

2n−1

1√
2
∑
c,y

ωb·c
1 ωb·y+2·x·y

n |cy〉

6

And since ω1 = ω2n−1
n , we can add that to the ωn base as well.

1√
2n

∑
c,y

ωb·c
1 ωb·y+2·x·y

n |cy〉 = 1√
2n

∑
c,y

ωb·c·2n−1+b·y+2·x·y
n |cy〉

Now the only summand that is missing is x · c · 2n. But remember that ω2n
n = 1 as

it does a complete circle. And thus we can say 1 = 1a = ω2n·a
n , and we can add in

the last term.
1√
2n

∑
c,y

ωb·c·2n−1+b·y+2·x·y
n · 1|cy〉 =

1√
2n

∑
c,y

ωb·c·2n−1+b·y+2·x·y
n · ω2n·x·c

n |cy〉 =

1√
2n

∑
c,y

ωb·c·2n−1+b·y+2·x·y+2n·x·c
n |cy〉 =

1√
2n

∑
c,y

ωbx·cy
n |cy〉

And thus we have now successfully achieved the desired mapping, and shown that
we can implement QFT n by using QFT n−1, a Hadamard gate and some controlled
rotations. And since QFT 1 is just the Hadamard gate, we now know how to fully
implement a QFT n and thus a QFTn.

7

	Preliminaries
	Bit arithmetic and swapping
	Roots of unity

	Implementing QFT
	Our target
	Swapping
	Induction

